Showing posts with label singly-even. Show all posts
Showing posts with label singly-even. Show all posts

Wednesday, 25 January 2017

Area Magic Squares of Order-6

After my previous post "Area Magic Squares and Tori of Order-3," Walter Trump continued his computer research of the linear area magic squares of order-4, now joined in this venture by a fellow mathematician and programmer Hans-Bernhard Meyer.

Having already some insight into the linear area magic squares of the odd-order-3 and of the doubly-even-order-4, it was tempting to search for a singly-even-order example. I therefore decided to do some exploring, and on the 22nd January 2017, I found this first linear area magic square of order-6:

First Linear Area Magic Square of Order-6 with magic sum S=1296

For the area magic square shown above, the magic constant of each row, column and main diagonal is 1296 (64). The total areas are therefore 7776 (65). The mean number of each row, column and main diagonal is 216 (63). The last digits of the first and last numbers of the horizontal non-parallel rows are either 1 for odd number sequences, or 6 for even number sequences. Please note that the area cell 41 is not a triangle, but a trapezium (or trapezoid) like all the other cells. For those amongst you who may be interested in the mathematical construction, Hans-Bernhard Meyer has since very kindly produced the following parameterisation:

Parameters of a linear area magic square of order 6

From then on using a computer program to find many more examples, on the 26th January 2017, Hans-Bernhard Meyer drew to my attention a new linear area magic square with not only parallel vertical lines, but also a central horizontal line. He kindly authorised me to publish this example illustrated below:

Linear area magic square of order 6

The magic constant of this linear area magic square (L-AMS) is 474, and the total areas are 2,844. The last digits of the first and last numbers of the non-parallel rows are either 4 for the even number sequences, or 9 for the odd number sequences. I noticed that in addition to the central horizontal line, there was also a pair of broken magic diagonals which would enable an easy transformation, as illustrated below:

Area Magic Square of Order-6 after transformation, with magic sum S=474

It can be seen that these are two essentially different L-AMS viewpoints of a same area magic cylinder. Please note that there are also another four area semi-magic parallelograms displayed on this cylinder (with cells 44, 124, 144, or 19 in their top left corners).

On the 29th January 2017, Hans-Bernhard Meyer informed me that the following can be proved:
Every 6x6 L-AMS with magic sum S and horizontal centre line has the property:
x04+x11+x18+x19+x26+x33 = x03+x08+x13+x24+x29+x34 = S
and conversely, every 6x6 L-AMS with magic sum S and
x04+x11+x18+x19+x26+x33 = x03+x08+x13+x24+x29+x34 = S
has a horizontal centre line.
He stated that there are many examples of such L-AMS and strongly supposed that the example illustrated above had the lowest possible magic sum. He was able to confirm that examples with 2 horizontal lines do not exist.

On the same day, Hans-Bernhard also informed me that in the order-6, the L-AMS with the lowest possible magic sum had a magic constant of 402. He had found that there were several of these L-AMS, and kindly sent me details of an example, which I have illustrated below:

Linear area magic square of order 6

The total areas of this square are 2,412. The last digits of the first and last numbers of the non-parallel rows are either 2 for the even number sequences, or 7 for the odd number sequences. The even number sequence of the bottom row begins with 12, which Hans-Bernhard informs me is the lowest possible vertex area for L-AMS (linear area magic squares) of order-6.

These are only the first of an infinite number of examples that remain to be discovered, and I therefore expect to be regularly publishing updates to this post!

Related links


A former post Area Magic Squares and Tori of Order-3 can be found in these pages since the 13th January 2017.

On the 25th January 2017, Hans-Bernhard Meyer published an article entitled Observations on 4x4 Area Magic Squares with vertical lines in his website: Math'-pages.

On the 3rd February 2017, Walter Trump published a chapter entitled Area Magic Squares in his website: Notes on Magic Squares. This chapter includes many analyses and examples of area magic squares of the third and fourth-orders.

Since the 8th February 2017, "Area Magic Squares of Order-4" relates the first findings of area magic squares of the fourth-order.

In the N° 487 2018 May issue of "Pour La Science" (the French edition of Scientific American), Professor Jean-Paul Delahaye has written an article entitled "Les Carrés Magiques d'Aires."

In the December 2018 issue of "Spektrum der Wissenschaft" (a Springer Nature journal, and the German edition of Scientific American), Professor Jean-Paul Delahaye has written an article entitled "FLÄCHENMAGISCHE QUADRATE."
 
On the 21st May 2021, Yoshiaki Araki (面積魔方陣がテセレーションみたいな件 @alytile) tweeted several order-4 and order-3 solutions in a polyomino area magic square thread. These included (amongst others) an order-4 example constructed with 16 assemblies of 5 to 20 dominoes. For more information on polyomino area magic squares please check the links at the end of the article "Area Magic Squares of Order-3."
 
Since the 22nd June 2021, Inder Taneja has published a paper entitled "Creative Magic Squares: Area Representations" in which he explores polyomino area magic using perfect square magic sums.
 
 A new post on "Polyomino Area Magic Tori" can be found in these pages since the 7th June 2022.

Follow it subscription button
Read more ...

Saturday, 10 September 2016

Magic Torus Coordinate and Vector Symmetries

Magic squares have fascinated mathematicians for centuries and they continue to do so today. However, many questions remain unanswered, and this study proposes a different perspective in order to shed new light on what magic squares are and how they work. Considering magic squares to be flattened partial viewpoints of convex or concave magic tori, the implied Gaussian surfaces require a modular arithmetic approach that is tested and analysed here.

Until today, most magic square construction methods use base squares, whilst "Magic Torus Coordinate and Vector Symmetries" proposes modular coordinate equations that not only define specific magic tori, but also generate their magic torus descendants.

The construction of Agrippa's traditional magic squares is analysed in detail for each of the seven planetary magic tori, and modular coordinate equations are defined that generate descendant tori throughout the respective higher-orders, whether they be odd, doubly-even, or singly-even.

The unique third-order magic torus and also a fifth-order pandiagonal torus of Latin construction are examined in detail. The modular coordinate equations that are defined generate an interesting variety of higher-odd-order descendant tori.

The study also explores the construction of the 12 different types of fourth-order magic tori, as well as the generation of their doubly-even magic torus descendants. In addition, a fourth-order Candy-style perfect square pandiagonal torus, and a fourth-order unidirectionally pandiagonal semi-magic torus, are each analysed in detail, and their torus descendants generated, throughout their respective higher-orders.

At the end of the study observations are made, and some conclusions are drawn as to the signification of the findings, and the potential for future research.

Some sample illustrations of a fourth-order partially pandiagonal torus and its partially pandiagonal torus descendants are shown below:


T4.195 partially pandiagonal magic torus of order-4
T4.195 4th-order partially pandiagonal torus

T4.195 partially pandiagonal magic torus descendant of order-8
8th-order partially pandiagonal torus, direct descendant of T4.195

T4.195 partially pandiagonal magic torus descendant of order-12
12th-order partially pandiagonal torus, direct descendant of T4.195

T4.195 partially pandiagonal magic torus descendant of order-16
16th-order partially pandiagonal torus, direct descendant of T4.195

To download "Magic Torus Coordinate and Vector Symmetries" from Google Drive, please use the following link: MTCVS 161019. The 134 Mo pdf file exceeds the maximum size (25 Mo) that Google Drive can scan, but as the file is virus free you can download it safely. Depending on the speed of your computer, the download can take up to two or three minutes to complete.


Follow it subscription button
Read more ...