Last December I made a sketch design of an area magic square to illustrate a seasonal greetings card for 2017. Using the traditional order-3 magic square, I attempted to use continuous straight lines for the area cell borders. I quickly realised that such an assembly was impossible to achieve, but that with approximate areas I could nevertheless make a pleasing graphic pattern:

Sending this image with my best wishes to a circle of magic square enthusiasts on the 30th December 2016, I added the following postscript: "The areas are approximate, and I don't know if it is possible to obtain the correct areas with 2 vertically slanted straight lines through the square. Perhaps someone will be able to work this out in 2017?"

Lee Sallows was the first to respond on the 4th and 5th January 2017, proposing an approach based on his previous work on geomagic squares. Developing the ideas that can be found in the figure 4.1 on page 5 of his book

*"Geometric Magic Squares: A Challenging New Twist Using Colored Shapes Instead of Numbers,"*his area square is illustrated below:
Lee Sallows points out that, when comparing the initial square of his book with this new puzzle square, "in many (but not all) cases adjacent piece outlines have been made to complement each other. For every gain in area at one position there is an identical loss of area at another. In this way the areas of all 9 pieces remain as they were, so that the square remains a magical dissection." Thank you for your work Lee! I particularly like your puzzle solution.

Meanwhile, I was wondering if a solution could be found for a third-order area magic torus, that is to say, one where the area cell intersections would meet correctly when wrapped. With this purpose in mind I set the following new rules for myself:

1/ Each cell will have an area that corresponds with its number from 1 to 9. The total areas will therefore be 45.

2/ The connections between the cells will remain unchanged, but as these cells will be of different sizes, the resulting latitudes, longitudes and diagonals will not necessarily be straight lines. The initially square cells will become regular or irregular quadrilaterals, (excluding complex quadrilaterals).

3/ The distances measured orthogonally between opposite sides of the resulting magic or semi-magic square viewpoints will always be √45, (the circumferences of the magic torus).

This third rule took into account the flattened square that we are accustomed to looking at, but it also implied that the torus would degenerate into a sphere... With these new constraints, on the 6th January 2017 I was able to come up with the area magic torus illustrated below:

These extended best wishes, expressed through the complete set of third-order magic and semi-magic squares, include messages that reflect the multiple nationalities of the members of the magic square circle. The magic square viewpoint of the torus is placed at the top left. The patterns still need adjusting in order to achieve the correct areas, but as there is more flexibility, I am fairly confident that at least one accurate solution can be found.

On the 6th January 2017 Walter Trump also sent us a new area magic design that used 4 intersecting straight bisectors. Although this schema could not be adapted to the number sequence 1 to 9, it was area magic:

Inder Jeet Taneja then suggested that the problem with the sequence 1 to 9 was that the total areas did not sum to a perfect square area. He proposed that instead of using the numbers 1 to 9, perhaps we should try using the numbers 5 + 6 + ... + 13 = 81 = 9² ?

On the same day, following Inder's suggestion, Walter Trump amazed us all with this first third-order linear area magic square! :

Bravo Walter for your achievement following Inder's suggestion! I hardly dared to believe that such a simple area pattern could produce a magic square!

Having other commitments to honour, Walter Trump then requested that somebody else searched for solutions using lower sequences. No other volunteers came forward, so I decided to look for myself, and came up with this second linear area magic square of the third-order using the sequence 3 to 11:

As I am not a programmer, I used Autocad to construct this linear area magic square manually. The areas of this provisional square are therefore only accurate up to two zeros after the commas, before computer verification and area optimisation.

In the meantime Walter Trump continued writing a computer program to handle the equations and search iteratively for solutions. This was able to give orthogonal coordinates having at least 14 decimals after the commas. At first unable to solve the non-linear equations explicitly, Walter progressively improved his approach, and on the 8th January 2017 he sent us a message stating that for some sequences there were two solutions, and that the lowest number sequence ranged from 2 to 10!

On the 10th January 2017, Walter Trump created an algorithm for "Third-Order Linear Area Magic," which he has kindly authorised me to publish below. This explains the method of construction and gives the reason why two solutions exist for most, but not all of the sequences studied:

Using the coordinates generated by Walter Trump's computer program, both solutions of the 5 lowest sequences of the third-order linear area magic squares are illustrated in square form below. It will be seen that the 1 to 9 sequence fails, and the linear area magic squares are only possible from the sequence 2 to 10 upwards (when the bisectors intersect outside the squares):

During this time my first question concerning the sequence 1 to 9 remained unanswered, so, on the 9th January 2017, I created an area magic square using these numbers as shown below:

This "Mont Saint Michel" area magic square is not really mathematical, but more a recreational design. It shows that it is possible to use 2 straight bisectors - thus resolving the initial 2017 greetings card challenge. The design is an area magic square, because all of its cells are quadrilaterals (even if near triangular for the area 1), and all of their connections are preserved.

Inder Taneja has since followed up on his initial suggestions for perfect square sequences. He has some very interesting results, and once his new paper "Magic Squares with Numbers Sum Perfect Square" is published, I will provide a link towards it.

This is an ongoing story, and there will probably be new developments in the near future. Apart from Inder Taneja, Lee Sallows and Walter Trump who I have already mentioned, I also wish to thank the other participants: These include Craig Knecht for his kind encouragements, Miguel Angel Amela for his encouragements and suggestions concerning accuracy, Dwane Campbell for his encouragements and suggestions, and last but not least, Francis Gaspalou for his encouragements and interventions: For the area magic squares of the third-order, Francis Gaspalou wrote the equations of the 4 straight lines using 4 parameters which were the 4 slopes of those lines. He found the exact conditions which had to be fulfilled by these 4 parameters in order to obtain a solution. Unfortunately it was not possible to solve the system and write explicit formulae for the solutions. Francis was nevertheless able to check that the two solutions per sequence found by Walter Trump's algorithm fulfilled the conditions. Thus by using this different method, Francis was able to confirm the validity of Walter's computer results. Francis Gaspalou has kindly authorised me to publish his equations here:

On the 13th January 2017 Bob Ziff intervened, stating that if we agree that the system of equations is soluble, then it is soluble to any number of digits, and proved his point by calculating the slopes with 1000 digits, using the professional software Mathematica and the four equations of Francis Gaspalou.

Also, on the 13th January 2017, Walter Trump created a third-order linear area nearly-magic square with integer coordinates. This square is semi-magic with a magic constant of 940800! Walter points out that when you divide all the areas by 140, then the coordinates are no longer integers, but irrational numbers that can be exactly described using fractions and square roots. Walter has kindly authorised me to publish his findings below:

On the 13th January 2017 Bob Ziff intervened, stating that if we agree that the system of equations is soluble, then it is soluble to any number of digits, and proved his point by calculating the slopes with 1000 digits, using the professional software Mathematica and the four equations of Francis Gaspalou.

Also, on the 13th January 2017, Walter Trump created a third-order linear area nearly-magic square with integer coordinates. This square is semi-magic with a magic constant of 940800! Walter points out that when you divide all the areas by 140, then the coordinates are no longer integers, but irrational numbers that can be exactly described using fractions and square roots. Walter has kindly authorised me to publish his findings below:

Francis Gaspalou has suggested that the next step might be to find a fourth-order area magic square with 6 straight bisectors, or even a concentric fifth-order area magic square. Why not imagine a contest, open to all, so as to find higher-order solutions of an equal mathematical importance to that of the third-order linear area magic squares?

If anyone wishes to contribute linear or other strict geometrical constructions of higher-order area magic squares, then please send me the x and y coordinates of the cell intersections that define the areas correctly up to two or more decimals after the commas. No prizes can be given, but the authors of pertinent solutions will, if they wish, have their solutions published here, and thus be able to bask in the reflected glory...