Showing posts with label order-6. Show all posts
Showing posts with label order-6. Show all posts

Tuesday, 7 June 2022

Polyomino Area Magic Tori

A magic torus can be found with any magic square, as has already been demonstrated in the article "From the Magic Square to the Magic Torus". In fact, there are n² essentially different semi-magic or magic squares, displayed by every magic torus of order-n. Particularly interesting to observe with pandiagonal (or panmagic) examples, a magic torus can easily be represented by repeating the number cells of one of its magic square viewpoints outside its limits. However, once we begin to look at area magic squares, it becomes much less evident to visualise and construct the corresponding area magic tori using repeatable area cells, especially when the latter have to be irregular quadrilaterals... The following illustration shows a sketch of an area magic torus of order-3 that I created back in January 2017. I call it a sketch because it may be necessary to use consecutive areas starting from 2 or from 3, should the construction of an area magic torus of order-3, using consecutive areas from 1 to 9, prove to be impossible. And while it can be seen that such a torus is theoretically constructible, many calculations will be necessary to ensure that the areas are accurate, and that the irregular quadrilateral cells can be assembled with precision:

Colour diagram of an area magic torus of order-3, showing the 9 magic square viewpoints, created by William Walkington in 2017

At the time discouraged by the complications of such geometries, I decided to suspend the research of area magic tori. But since the invention of area magic squares, other authors have introduced some very interesting polyomino versions that open new perspectives: 

On the 20th May 2021, Morita Mizusumashi (盛田みずすまし @nosiika) tweeted a nice polyomino area magic square of order-3 constructed with 9 assemblies of 5 to 13 monominoes. On the 21st May 2021, Yoshiaki Araki (面積魔方陣がテセレーションみたいな件 @alytile) tweeted several order-4 and order-3 solutions in a polyomino area magic square thread. These included (amongst others) an order-4 example constructed with 16 assemblies of 5 to 20 dominoes. On the 24th May 2021, Yoshiaki Araki then tweeted an order-3 polyomino area magic square constructed using 9 assemblies of 1 to 9 same-shaped pentominoes! Edo Timmermans, the author of this beautiful square, had apparently been inspired by Yoshiaki Araki's previous posts! Since the 22nd June 2021, Inder Taneja has also published a paper entitled "Creative Magic Squares: Area Representations" in which he studies polyomino area magic using perfect square magic sums.

Intention and Definition

The intention of the present article is to explore the use of polyominoes for area magic torus construction, with the objective of facilitating the calculation and verification of the cell areas, while avoiding the geometric constraints of irregular quadrilateral assemblies. Here, it is useful to give a definition of a polyomino area magic torus:

1/ In the diagram of the torus, the entries of the cells of each column, row, and of at least two intersecting diagonals, will add up to the same magic sum. The intersecting magic diagonals can be offset or broken, as the area magic torus has a limitless surface, and can therefore display semi-magic square viewpoints.
2/ Each cell will have an area in proportion to its number. The different areas will be represented by tiling with same-shaped holeless polyominoes.
3/ The cells can be of any regular or irregular rectangular shape that results from their holeless tiling. 
4/ Depending on the order-n of the area magic torus, each cell will have continuous edge connections with contiguous cells (and these connections can be wrap-around, because the torus diagram represents a limitless curved surface).
5/ The vertex meeting points of four cells can only take place at four convex (i.e. 270° exterior  angled) vertices of each of the cells.

Polyomino Area Magic Tori (PAMT) of Order-3


Colour diagram of the magic torus of order-3, displaying Agrippa's "Saturn" magic square, with graphics by William Walkington
Magic Torus index n° T3, of order-3. Magic sums = 15.
Please note that this is not a Polyomino Area Magic Torus,
but it is the Agrippa "Saturn" magic square, after a rotation of +90°, in Frénicle standard form.

Diagram of irregular rectangular Polyomino Area Magic Torus of order-3 with tetromino tiles, by William Walkington in 2022
Polyomino Area Magic Torus (PAMT) of order-3. Magic sums = 15. Tetrominoes.
Consecutively numbered areas 1 to 9, in an irregular rectangular shape of 180 units.

Diagram of an irregular rectangular Polyomino Area Magic Torus of order-3 with tromino tiles, by William Walkington in 2022
Polyomino Area Magic Torus (PAMT) of Order-3. Magic sums = 18. Trominoes.
Consecutively numbered areas 2 to 10, in an irregular rectangular shape of 162 units.

Colour diagram of an oblong Polyomino Area Magic Torus of order-3 with tromino tiles, created by William Walkington in 2022
Polyomino Area Magic Torus (PAMT) of order-3. Magic sums = 24. Trominoes.
Consecutively numbered areas 4 to 12, in an oblong 12 ⋅ 18 = 216 units.

Colour diagram of a square Polyomino Area Magic Torus of order-3 with tromino tiles, V1 created by William Walkington in 2022
Polyomino Area Magic Torus (PAMT) of Order-3. Magic sums = 36. Trominoes Version 1.
Square 18 ⋅ 18 = 324 units.

Colour diagram of a square Polyomino Area Magic Torus of order-3 with tromino tiles, V2 created by William Walkington in 2022
Polyomino Area Magic Torus (PAMT) of Order-3. Magic sums = 36. Trominoes Version 2.
Square 18 ⋅ 18 = 324 units.

Colour diagram of a square Polyomino Area Magic Torus of order-3 with pentomino tiles, V1 created by William Walkington in 2022
Polyomino Area Magic Torus (PAMT) of Order-3. Magic sums = 60. Pentominoes Version 1.
Square 30 ⋅ 30 = 900 units.

Diagram of an irregular rectangular Polyomino Area Magic Torus of order-3 with monomino tiles, by William Walkington in 2022
Polyomino Area Magic Torus (PAMT) of order-3. Magic sums = 24. Monominoes.
Consecutively numbered areas 4 to 12, in an irregular rectangular shape of 72 units.

Colour diagram of a square Polyomino Area Magic Torus of order-3 with monomino tiles, V1 created by William Walkington in 2022
Polyomino Area Magic Torus (PAMT) of order-3. Magic sums = 27. Monominoes Version 1.
Consecutively numbered areas 5 to 13, in a square 9 ⋅ 9 = 81 units.

Colour diagram of a square Polyomino Area Magic Torus of order-3 with monomino tiles, V2 created by William Walkington in 2022
Polyomino Area Magic Torus (PAMT) of order-3. Magic sums = 27. Monominoes Version 2.
Consecutively numbered areas 5 to 13, in a square 9 ⋅ 9 = 81 units.

Polyomino Area Magic Tori (PAMT) of Order-4


Colour diagram of a pandiagonal Magic Torus of order-4, displaying the Frénicle 107 index number square, by William Walkington
Magic Torus index n° T4.198, of order-4. Magic sums = 34.
Please note that this is not a Polyomino Area Magic Torus,
but it is a pandiagonal torus represented by a pandiagonal square that has Frénicle index n° 107.

The pandiagonal torus above displays 16 Frénicle indexed magic squares n° 107, 109, 171, 204, 292, 294, 355, 396, 469, 532, 560, 621, 691, 744, 788, and 839. It is entirely covered by 16 sub-magic 2x2 squares. The torus is self-complementary and has the magic torus complementary number pattern I. The even-odd number pattern is P4.1. This torus is extra-magic with 16 extra-magic nodal intersections of 4 magic lines. It displays pandiagonal Dudeney I Nasik magic squares. It is classified with a Magic Torus index n° T4.198, and is of Magic Torus type n° T4.01.2. Also, when compared with its two pandiagonal torus cousins of order-4, the unique Magic Torus T4.198 of the Multiplicative Magic Torus MMT4.01.1 is distinguished by its total self-complementarity.

Colour diagram of a pandiagonal Polyomino Area Magic Torus of order-4, constructed with pentominoes by William Walkington
Pandiagonal Polyomino Area Magic Torus (PAMT) of order-4. Magic sums = 34. Pentominoes.
Index PAMT4.198, Version 1, Viewpoint 1/16, displaying Frénicle magic square index n° 107.
Consecutively numbered areas 1 to 16, in an oblong 34 ⋅ 20 = 680 units.

Colour diagram of a square Polyomino Area Magic Torus of order-4 with domino tiles, V1 created by William Walkington in 2022
Pandiagonal Polyomino Area Magic Torus (PAMT) of order-4. Magic sums = 50. Dominoes.
Version 1, Viewpoint 1/16.
Consecutively numbered areas 5 to 20, in a square 20 ⋅ 20 = 400 units.

Diagram of an irregularly shaped view of a Polyomino Area Magic Torus of order-4 with domino tiles, by William Walkington in 2022
Pandiagonal Polyomino Area Magic Torus (PAMT) of Order-4. Sums = 50. Dominoes.
Version 1, Viewpoint 16/16.
Consecutively numbered areas 5 to 20, in an irregular rectangular shape of 400 units.

Polyomino Area Magic Tori (PAMT) of Order-5


Pandiagonal Torus type n° T5.01.00X of order-5. Magic sums = 65.
Please note that this is not a Polyomino Area Magic Torus.

This pandiagonal torus of order-5 displays 25 pandiagonal magic squares. It is a direct descendant of the T3 magic torus of order-3, as demonstrated in page 49 of "Magic Torus Coordinate and Vector Symmetries" (MTCVS). In "Extra-Magic Tori and Knight Move Magic Diagonals" it is shown to be an Extra-Magic Pandiagonal Torus Type T5.01 with 6 Knight Move Magic Diagonals. Note that when centred on the number 13, the magic square viewpoint becomes associative. The torus is classed under type n° T5.01.00X (provisional number), and is one of 144 pandiagonal or panmagic tori type 1 of order-5 that display 3,600 pandiagonal or panmagic squares. On page 72 of "Multiplicative Magic Tori" it is present within the type MMT5.01.00x.

Colour diagram of a pandiagonal Polyomino Area Magic Torus of order-5, constructed with hexominoes by William Walkington
Pandiagonal Polyomino Area Magic Torus (PAMT) of order-5. Magic sums = 65. Hexominoes.
Index PAMT5.01.00X, Version 1, Viewpoint 1/25.
Consecutively numbered areas 1 to 25, in an oblong 65 ⋅ 30 = 1950 units.

Colour diagram of a square Polyomino Area Magic Torus of order-5 with monomino tiles, V1 created by William Walkington in 2022
Pandiagonal Polyomino Area Magic Torus (PAMT) of Order-5. Magic sums = 125. Monominoes.
Version 1, Viewpoint 1/25.
Consecutively numbered areas 13 to 37, in a square 25 ⋅ 25 = 625 units.

Colour diagram of a square Polyomino Area Magic Torus of order-5 with monomino tiles, V2 created by William Walkington in 2022
Pandiagonal Polyomino Area Magic Torus (PAMT) of Order-5. Magic sums = 125. Monominoes.
Version 2, Viewpoint 1/25.
Consecutively numbered areas 13 to 37, in a square 25 ⋅ 25 = 625 units.

Polyomino Area Magic Tori (PAMT) of Order-6


Partially Pandiagonal Torus type n° T6 of order-6. Magic sums = 111.
Please note that this is not a Polyomino Area Magic Torus.

Harry White has kindly authorised me to use this order-6 magic square viewpoint. With a supplementary broken magic diagonal (24, 19, 31, 3, 5, 29), this partially pandiagonal torus displays 4 partially pandiagonal squares and 32 semi-magic squares. In "Extra-Magic Tori and Knight Move Magic Diagonals" it is shown to be an Extra-Magic Partially Pandiagonal Torus of Order-6 with 6 Knight Move Magic Diagonals. This is one of 2627518340149999905600 magic and semi-magic tori of order-6 (total deduced from findings by Artem Ripatti - see OEIS A271104 "Number of magic and semi-magic tori of order n composed of the numbers from 1 to n^2").

Colour diagram of a partially pandiagonal Polyomino Area Magic Torus of order-6, made with heptominoes by William Walkington
Partially Pandiagonal Polyomino Area Magic Torus (PAMT) of order-6. Magic sums = 111.
Heptominoes, Version 1, Viewpoint 1/36.
Consecutively numbered areas 1 to 36, in an oblong 111 ⋅ 42 = 4662 units.

Colour diagram of a square Polyomino Area Magic Torus of order-6 with domino tiles, V1 created by William Walkington in 2022
Partially Pandiagonal Polyomino Area Magic Torus (PAMT) of order-6. Sums = 147.
Dominoes, Version 1, Viewpoint 1/36.
Consecutively numbered areas 7 to 42, in a square 42 ⋅ 42 = 1764 units.

Observations

As they are the first of their kind, these Polyomino Area Magic Tori (PAMT) can most likely be improved: The examples illustrated above are all constructed with their cells aligned horizontally or vertically; and though it is convenient to do so, because it allows their representation as oblongs or squares, this method of constructing PAMT is not obligatory. Representations of PAMT that have irregular rectangular contours may well give better results, with less-elongated cells and simpler cell connections. 

While the use of polyominoes has the immense advantage of allowing the construction of area magic tori with easily quantifiable units, it also introduces the constraint of the tiling of the cells. It has been seen in the examples above that the PAMT can be represented as oblongs or as squares, while other irregular rectangular solutions also exist. A normal magic square of order-3 displays the numbers 1 to 9 and has a total of 45, which is not a perfect square. As the smallest addition to each of the nine numbers 1 to 9, in order to reach a perfect square total is four (45 + 9 ⋅ 4 = 81), this implies that when searching for a square PAMT with consecutive areas of 1 to 9, in theory the smallest polyominoes for this purpose will be pentominoes.

But to date, in the various shaped examples of PAMT shown above, the smallest cell area used to represent the area 1 is a tetromino, as this gives sufficient flexibility for the connections of a nine-cell PAMT of order-3 with consecutive areas of 1 to 9. Edo Timmermans has already constructed a Polyomino Area Magic Square of order-3 using pentominoes for the consecutive areas of 1 to 9, but it seems that such polyominoes cannot be used for the construction of a same-sized and shaped PAMT of order-3. Straight polyominoes are always used in the examples given above, as these facilitate long connections, but other polyomino shapes will in some cases be possible.

We should keep in mind that the PAMT are theoretical, in that, per se, they cannot tile a torus: As a consequence of Carl Friedrich Gauss's "Theorema Egregium", and because the Gaussian curvature of the torus is not always zero, there is no local isometry between the torus and a flat surface: We can't flatten a torus without distortion, which therefore makes a perfect map of that torus impossible. Although we can create conformal maps that preserve angles, these do not necessarily preserve lengths, and are not ideal for our purpose. And while two topological spheres are conformally equivalent, different topologies of tori can make these conformally distinct and lead to further mapping complications. For those wishing to know more, the paper by Professor John M. Sullivan, entitled "Conformal Tiling on a Torus", makes excellent reading.

Notwithstanding their theoreticality, the PAMT nevertheless offer an interesting field of research that transcends the complications of tiling doubly-curved torus surfaces, while suggesting interesting patterns for planar tiling: For those who are not convinced by 9-colour tiling, 2-colour pandiagonal tiling can also be a good choice for geeky living spaces:

Colour diagram of irregular rectangular Polyomino Area Magic Torus tiling of order-3 with monominoes, by William Walkington in 2022
Tiling with irregular rectangular shaped PAMT of order-3. Monominoes. S=24.

Diagram of irregular rectangular Polyomino Area Magic Torus tiling of order-3 with tetromino tiles, by William Walkington in 2022
Tiling with irregular rectangular shaped PAMT of order-3. Tetrominoes. S=15.

Diagram of irregular rectangular Polyomino Area Magic Torus tiling of order-3 with tromino tiles, by William Walkington in 2022
Tiling with irregular rectangular shaped PAMT of order-3. Trominoes. S=18.

Colour diagram of oblong Polyomino Area Magic Torus tiling of order-3 with tromino tiles, created by William Walkington in 2022
Tiling with oblong PAMT of order-3. Trominoes. S=24.

Colour diagram of oblong Polyomino Area Magic Torus tiling of order-4 with pentomino tiles, by William Walkington in 2022
Tiling with oblong pandiagonal PAMT of order-4. Pentominoes. S=34.

Colour diagram of oblong Polyomino Area Magic Torus tiling of order-5 with hexomino tiles, by William Walkington in 2022
Tiling with oblong pandiagonal PAMT of order-5. Hexominoes. S=65.

Colour diagram of square Polyomino Area Magic Torus tiling of order-5 with monomino tiles, created by William Walkington in 2022
Tiling with square pandiagonal PAMT of order-5. Monominoes. S=125.

Colour diagram of oblong Polyomino Area Magic Torus tiling of order-6 with heptomino tiles, by William Walkington in 2022
Tiling with oblong partially pandiagonal PAMT of order-6. Heptominoes. S=111.

Colour diagram of square Polyomino Area Magic Torus tiling of order-6 with domino tiles, by William Walkington in 2022
Tiling with square partially pandiagonal PAMT of order-6. Dominoes. S=147.

There are still plenty of other interesting PAMT that remain to be found, and I hope you will authorise me to publish or relay your future discoveries and suggestions!


Follow it subscription button
Read more ...

Thursday, 30 April 2020

John Horton Conway and LUX

On the 25th April 2020, I came across a newsletter of the French magazine "Tangente" announcing that, despite the ongoing COVID-19 difficulties, their next issue n° 194 would still be published at the end of May. They stated that this future magazine would contain a main section dedicated to the late John Horton Conway, famous for his "Game of Life" (a cellular automaton in which cells live, die and are born). Having been previously unaware of Conway's death, I immediately wished to inform the fellow members of a magic square circle of the sad news, and sent them the following e-mail: 

Dear all,
I have just learnt that John Horton Conway passed away on the 11th April in New Brunswick, New Jersey, at the age of 82, after complications from COVID-19. I did not know him personally, but I expect that some of you did. His well-known LUX method for magic squares is an algorithm for creating magic squares of order 4n+2, where n is a natural number, and his "lozenge" method is another method of construction of magic squares. So this is a considerable loss to the magic square community, and goes to show that the virus is indiscriminate and dangerous.

Here's hoping that a cure will be found soon.

Stay safe!

William 

I rapidly received replies from Peter Loly, Bob Ziff, Awani Kumar and Miguel Angel Amela:

Peter Loly stated that Conway's passing away reminded him of his colleague Richard Guy who had passed away aged 103 on the 30th September 2019, and also of the losses of John Hendricks and Harvey Heinz, both of whom he had met. He asked if I could send this information out on the blog.

Bob Ziff replied to say that Conway had had the bad luck of being in a nursing home for some other health problems, and concluded by writing "Let’s all hope that we stay healthy!"

Awani Kumar replied with a simple "So sad. RIP."

Miguel Angel Amela then replied with a photomontage of a very fitting "in memoriam" plaque: He proposed that John Horton Conway's name could be inscribed above a 6x6 magic square constructed with Conway's LUX method, and that the Spanish words "descansa en la LUX" could be inscribed below. The Spanish text "descansa en la LUX" means "rest in the LUX" or "rest in the LIGHT." Miguel stated that in Latin, the inscription would be R.I.L. or "REQUIESCAT IN LUX," and he suggested a poem written by Art Durkee, entitled "requiescat in lux." 

An "In Memoriam" plaque for John Horton Conway

Miguel Amela's idea of an "in memoriam" plaque in homage of John Horton Conway and his LUX method for constructing magic squares
Adaptation of Miguel Angel Amela's idea of an "in memoriam" plaque for John Horton Conway

Perhaps, one day, a plaque like this will be placed at Cambridge or Princeton, or at another of Conway's haunts.

John Horton Conway's LUX Method


Martin Erickson has already described Conway's LUX method in page 98 of "Aha Solutions" (published by the Mathematical Association of America in 2009), and he even used the same "in memoriam" square of order-6 as a base array to construct a LUX square of order-18! However, here it is useful to examine how the LUX method can be used to construct the "in memoriam" square itself, and the following pdf file explains the construction steps:



The "in memoriam" magic square can also be programmed, for example using languages such as Elixir, Haskell and Ruby, as shown in "Magic squares of singly even order," edited by the programming chrestomathy site "Rosetta Code."

Conclusions


This short article only intends to commemorate a small part of John Horton Conway's work on magic squares. Because I myself have never had the pleasure of meeting him, those who did are far better placed to write about his other accomplishments, and about his life in general. The obituary written by Catherine Zandonella for Princeton University gives us a good insight, not only of his many achievements, but also of his mathematical playfulness and of his kind attention to others that made him many friends. Another source of information with useful external links is John Horton Conway's biography written by John Joseph O'Connor and Edmund Frederick Robertson for the MacTutor History of Mathematics Archive at the University of St Andrews. 

Acknowledgements


I wish to thank Peter Loly, Bob Ziff, Awani Kumar and Miguel Angel Amela for replying to my e-mail. Their messages and contributions have inspired me to write this post.

With COVID-19 still active and dangerous at the time of writing, I urge you all to take heed of the social distancing guidelines, and keep safe!

Follow it subscription button
Read more ...

Wednesday, 25 January 2017

Area Magic Squares of Order-6

After my previous post "Area Magic Squares and Tori of Order-3," Walter Trump continued his computer research of the linear area magic squares of order-4, now joined in this venture by a fellow mathematician and programmer Hans-Bernhard Meyer.

Having already some insight into the linear area magic squares of the odd-order-3 and of the doubly-even-order-4, it was tempting to search for a singly-even-order example. I therefore decided to do some exploring, and on the 22nd January 2017, I found this first linear area magic square of order-6:

First Linear Area Magic Square of Order-6 with magic sum S=1296

For the area magic square shown above, the magic constant of each row, column and main diagonal is 1296 (64). The total areas are therefore 7776 (65). The mean number of each row, column and main diagonal is 216 (63). The last digits of the first and last numbers of the horizontal non-parallel rows are either 1 for odd number sequences, or 6 for even number sequences. Please note that the area cell 41 is not a triangle, but a trapezium (or trapezoid) like all the other cells. For those amongst you who may be interested in the mathematical construction, Hans-Bernhard Meyer has since very kindly produced the following parameterisation:

Parameters of a linear area magic square of order 6

From then on using a computer program to find many more examples, on the 26th January 2017, Hans-Bernhard Meyer drew to my attention a new linear area magic square with not only parallel vertical lines, but also a central horizontal line. He kindly authorised me to publish this example illustrated below:

Linear area magic square of order 6

The magic constant of this linear area magic square (L-AMS) is 474, and the total areas are 2,844. The last digits of the first and last numbers of the non-parallel rows are either 4 for the even number sequences, or 9 for the odd number sequences. I noticed that in addition to the central horizontal line, there was also a pair of broken magic diagonals which would enable an easy transformation, as illustrated below:

Area Magic Square of Order-6 after transformation, with magic sum S=474

It can be seen that these are two essentially different L-AMS viewpoints of a same area magic cylinder. Please note that there are also another four area semi-magic parallelograms displayed on this cylinder (with cells 44, 124, 144, or 19 in their top left corners).

On the 29th January 2017, Hans-Bernhard Meyer informed me that the following can be proved:
Every 6x6 L-AMS with magic sum S and horizontal centre line has the property:
x04+x11+x18+x19+x26+x33 = x03+x08+x13+x24+x29+x34 = S
and conversely, every 6x6 L-AMS with magic sum S and
x04+x11+x18+x19+x26+x33 = x03+x08+x13+x24+x29+x34 = S
has a horizontal centre line.
He stated that there are many examples of such L-AMS and strongly supposed that the example illustrated above had the lowest possible magic sum. He was able to confirm that examples with 2 horizontal lines do not exist.

On the same day, Hans-Bernhard also informed me that in the order-6, the L-AMS with the lowest possible magic sum had a magic constant of 402. He had found that there were several of these L-AMS, and kindly sent me details of an example, which I have illustrated below:

Linear area magic square of order 6

The total areas of this square are 2,412. The last digits of the first and last numbers of the non-parallel rows are either 2 for the even number sequences, or 7 for the odd number sequences. The even number sequence of the bottom row begins with 12, which Hans-Bernhard informs me is the lowest possible vertex area for L-AMS (linear area magic squares) of order-6.

These are only the first of an infinite number of examples that remain to be discovered, and I therefore expect to be regularly publishing updates to this post!

Related links


A former post Area Magic Squares and Tori of Order-3 can be found in these pages since the 13th January 2017.

On the 25th January 2017, Hans-Bernhard Meyer published an article entitled Observations on 4x4 Area Magic Squares with vertical lines in his website: Math'-pages.

On the 3rd February 2017, Walter Trump published a chapter entitled Area Magic Squares in his website: Notes on Magic Squares. This chapter includes many analyses and examples of area magic squares of the third and fourth-orders.

Since the 8th February 2017, "Area Magic Squares of Order-4" relates the first findings of area magic squares of the fourth-order.

In the N° 487 2018 May issue of "Pour La Science" (the French edition of Scientific American), Professor Jean-Paul Delahaye has written an article entitled "Les Carrés Magiques d'Aires."

In the December 2018 issue of "Spektrum der Wissenschaft" (a Springer Nature journal, and the German edition of Scientific American), Professor Jean-Paul Delahaye has written an article entitled "FLÄCHENMAGISCHE QUADRATE."
 
On the 21st May 2021, Yoshiaki Araki (面積魔方陣がテセレーションみたいな件 @alytile) tweeted several order-4 and order-3 solutions in a polyomino area magic square thread. These included (amongst others) an order-4 example constructed with 16 assemblies of 5 to 20 dominoes. For more information on polyomino area magic squares please check the links at the end of the article "Area Magic Squares of Order-3."
 
Since the 22nd June 2021, Inder Taneja has published a paper entitled "Creative Magic Squares: Area Representations" in which he explores polyomino area magic using perfect square magic sums.
 
 A new post on "Polyomino Area Magic Tori" can be found in these pages since the 7th June 2022.

Follow it subscription button
Read more ...