Showing posts with label patterns. Show all posts
Showing posts with label patterns. Show all posts

Friday, 13 January 2017

Area Magic Squares and Tori of Order-3

In December 2016 I made a sketch design of an area magic square to illustrate a seasonal greetings card for 2017. Using the traditional order-3 magic square, I attempted to use continuous straight lines for the area cell borders. I quickly realised that such an assembly was impossible to achieve, but that with approximate areas I could nevertheless make a pleasing graphic pattern:

Area magic square design for 2017 seasonal greetings card, using approximate areas
Sending this image with my best wishes to a circle of magic square enthusiasts on the 30th December 2016, I added the following postscript: "The areas are approximate, and I don't know if it is possible to obtain the correct areas with 2 vertically slanted straight lines through the square. Perhaps someone will be able to work this out in 2017?"

Lee Sallows was the first to respond on the 4th and 5th January 2017, proposing an approach based on his previous work on geomagic squares. Developing the ideas that can be found in the figure 4.1 on page 5 of his book "Geometric Magic Squares: A Challenging New Twist Using Colored Shapes Instead of Numbers," his area square is illustrated below:

Area square by Lee Sallows
Area square by Lee Sallows
Lee Sallows points out that, when comparing the initial square of his book with this new puzzle square, "in many (but not all) cases adjacent piece outlines have been made to complement each other. For every gain in area at one position there is an identical loss of area at another. In this way the areas of all 9 pieces remain as they were, so that the square remains a magical dissection." Thank you for your work Lee! I particularly like your puzzle solution.

Meanwhile, I was wondering if a solution could be found for a third-order area magic torus, that is to say, one where the area cell intersections would meet correctly when wrapped. With this purpose in mind I set the following new rules for myself:
1/ Each cell will have an area that corresponds with its number from 1 to 9. The total areas will therefore be 45.
2/ The connections between the cells will remain unchanged, but as these cells will be of different sizes, the resulting latitudes, longitudes and diagonals will not necessarily be straight lines. The initially square cells will become regular or irregular quadrilaterals, (excluding complex quadrilaterals).
3/ The distances measured orthogonally between opposite sides of the resulting magic or semi-magic square viewpoints will always be √45, (the circumferences of the magic torus).
This third rule took into account the flattened square that we are accustomed to looking at, but it also implied that the torus would degenerate into a sphere... With these new constraints, on the 6th January 2017 I was able to come up with the area magic torus illustrated below:
Area Magic Torus of Order-3 with Nine Viewpoints, in a 2017 Seasonal Greetings Card Design
These extended best wishes, expressed through the complete set of third-order magic and semi-magic squares, include messages that reflect the multiple nationalities of the members of the magic square circle. The magic square viewpoint of the torus is placed at the top left. The patterns still need adjusting in order to achieve the correct areas, but as there is more flexibility, I am fairly confident that at least one accurate solution can be found.

On the 6th January 2017 Walter Trump also sent us a new area magic design that used 4 continuous straight dissection lines. Although this schema could not be adapted to the number sequence 1 to 9, it was area magic:
Area magic schema for order 3
Area Magic Schema by Walter Trump
Inder Jeet Taneja then suggested that the problem with the sequence 1 to 9 was that the total areas did not add up to a perfect square area. He proposed that instead of using the numbers 1 to 9, perhaps we should try using the numbers 5 + 6 + ... + 13 = 81 = 9² ?

On the same day, following Inder's suggestion, Walter Trump amazed us all with this first third-order linear area magic square! :

First linear area magic square of order 3
Bravo Walter for your achievement following Inder's suggestion! I hardly dared to believe that such a simple area pattern could produce a magic square!

Having other commitments to honour, Walter Trump then requested that somebody else searched for solutions using lower sequences. No other volunteers came forward, so I decided to look for myself, and came up with this second linear area magic square of the third-order using the sequence 3 to 11:
Area magic square of order 3 with approximate dimensions
As I am not a programmer, I used Autocad to construct this linear area magic square manually. The areas of this provisional square are therefore only accurate up to two decimal places, before computer verification and area optimisation.

In the meantime Walter Trump continued writing a computer program to handle the equations and search iteratively for solutions. This was able to give orthogonal coordinates having at least 14 decimals after the commas. At first unable to solve the non-linear equations explicitly, Walter progressively improved his approach, and on the 8th January 2017 he sent us a message stating that for some sequences there were two solutions, and that the lowest number sequence ranged from 2 to 10!

On the 10th January 2017, Walter Trump created an algorithm for "Third-Order Linear Area Magic," which he has kindly authorised me to publish below. This explains the method of construction and gives the reason why two solutions exist for most, but not all of the sequences studied:



Using the coordinates generated by Walter Trump's computer program, both solutions of the 5 lowest sequences of the third-order linear area magic squares are illustrated in square form below. It will be seen that the 1 to 9 sequence fails, and the linear area magic squares are only possible from the sequence 2 to 10 upwards (when the continuous straight dissection lines produce no more than 4 intersections inside the squares):

order 3 area magic square solution 1 sequence 1 to 9
Order 3 area magic square solution 2 sequence 1 to 9
order 3 area magic square solution 1 sequence 2 to 10
order 3 area magic square solution 2 sequence 2 to 10
order 3 area magic square solution 1 sequence 3 to 11
order 3 area magic square solution 2 sequence 3 to 11
order 3 area magic square solution 1 sequence 4 to 12
order 3 area magic square solution 2 sequence 4 to 12
order 3 area magic square solution 1 sequence 5 to 13
order 3 area magic square solution 2 sequence 5 to 13

During this time my first question concerning the sequence 1 to 9 remained unanswered. So, on the 9th January 2017, I created the first area magic square that used the numbers of the classical magic square of order-3, as illustrated below:

Mont-Saint-Michel design for an area magic square interpretation of the classical order-3 magic square

More recreational than mathematical, this "Mont Saint Michel" area magic square demonstrates that it is possible to use 2 continuous straight dissection lines - thus resolving the initial 2017 greetings card challenge. The design is an area magic square, because all of the cells are quadrilaterals (even if near triangular for the area 1), and all of their connections are preserved.

Inder Taneja has since followed up on his initial suggestions for perfect square sequences. On the 11th February 2017 he published some very interesting results in his new paper "Magic Squares with Perfect Square Number Sums."

This is an ongoing story, and there will probably be new developments in the near future. Apart from Inder Taneja, Lee Sallows and Walter Trump who I have already mentioned, I also wish to thank the other participants: These include Craig Knecht for his kind encouragements, Miguel Angel Amela for his encouragements and suggestions concerning accuracy, Dwane Campbell for his encouragements and suggestions, and last but not least, Francis Gaspalou for his encouragements and interventions: For the area magic squares of the third-order, Francis Gaspalou wrote the equations of the 4 straight lines using 4 parameters which were the 4 slopes of those lines. He found the exact conditions which had to be fulfilled by these 4 parameters in order to obtain a solution. Unfortunately it was not possible to solve the system and write explicit formulae for the solutions. Francis was nevertheless able to check that the two solutions per sequence found by Walter Trump's algorithm fulfilled the conditions. Thus by using this different method, Francis was able to confirm the validity of Walter's computer results. Francis Gaspalou has kindly authorised me to publish his equations here:



On the 13th January 2017 Bob Ziff intervened, stating that if we agree that the system of equations is soluble, then it is soluble to any number of digits, and proved his point by calculating the slopes with 1000 digits, using the professional software Mathematica and the four equations of Francis Gaspalou.

Also, on the 13th January 2017, Walter Trump created a third-order linear area nearly-magic square with integer coordinates. This square is semi-magic with a magic constant of 940800! Walter points out that when you divide all the areas by 140, then the coordinates are no longer integers, but irrational numbers that can be exactly described using fractions and square roots. Walter has kindly authorised me to publish his findings below:



Francis Gaspalou has suggested that the next step might be to find a fourth-order area magic square with 6 continuous straight dissection lines, or even a concentric fifth-order area magic square. Why not imagine a contest, open to all, so as to find higher-order solutions of an equal mathematical importance to that of the third-order linear area magic squares?

If anyone wishes to contribute linear or other strict geometrical constructions of higher-order area magic squares, then please send me the x and y coordinates of the cell intersections that define the areas correctly up to two or more decimals after the commas. No prizes can be given, but the authors of pertinent solutions will, if they wish, have their solutions published here, and thus be able to bask in the reflected glory...

Latest developments


On the 19th January 2017 Greg Ross published an article on the subject of Area Magic Squares in his Futility Closet - An Idler's Miscellany of Compendious Amusements. This article has since been relayed by Reddit Mathpics, Simplementenumeros, Prime Puzzles, and by Thermally Stressed Dairy Cows, amongst others.

On the 20th January 2017 I was aware that Walter Trump, (now joined by Hans-Bernhard Meyer), had already found that there are no cases of order-4 area magic squares with sequences of consecutive numbers. So I therefore began searching for non-consecutive number sequences that might also yield solutions in order-3, and produced the draft linear area magic square illustrated below:

Area Magic Square of Order-3 with sequences 4 to 6, 8 to 10, and 12 to 14.
I sent this square to Walter Trump and the other members of the magic square circle asking if it could be verified using a computer program. Walter was quick to react, sending me precise coordinates for two solutions. Drawn-up using his coordinates, the two versions of this square are illustrated below:

Order 3 linear area magic square verified
order 3 linear area magic squre verified 2

On the 3rd February 2017, responding to a Prime Puzzle challenge, Jan van Delden contributed the following palprime linear area magic square solution:

Palindromic prime area magic square

The palindromic primes used here are symmetrical numbers that remain the same when their digits are reversed. The magic sum of these 11-digit palindromic primes is 377,024,295,63. This area magic square is the conversion of a square that was originally sent by Carlos Rivera and Jaime Ayala to Harvey Heinz on the 22nd May 1999. Jan van Delden mentions that the direction coefficients of the lines are indicated in white, and that the quadrilaterals are numbered in the style of Francis Gaspalou. Full details of Jan van Delden's approach to the equations can be found in Prime Puzzles.

On the 4th February 2017 Jan van Delden contributed this second prime linear area magic square to Prime Puzzles:

order 3 prime number area magic square

Jan states that this prime area magic square has a minimal magic sum of S=213. Congratulations Jan, for these prime achievements!

Please note, that since the 5th March 2017, Jan has published a new paper entitled "Area Magic Squares of Order 3," in which he extends his findings.

Seemingly, the number of order-3 linear area squares is infinite!

Related links


A new post on Area Magic Squares of Order-6 can be found in these pages since the 25th January 2017.

On the same day Hans-Bernhard Meyer published an article entitled Observations on 4x4 Area Magic Squares with vertical lines in his website: Math'-pages.

Since the 3rd February 2017, Walter Trump has published a chapter entitled Area Magic Squares in his website: Notes on Magic Squares. This chapter includes many analyses and examples of area magic squares of the third and fourth-orders.

Since the 8th February 2017, "Area Magic Squares of Order-4" relates the first findings of area magic squares of the fourth-order.

Since the 11th February 2017, Inder Jeet Taneja, inspired by the research in area magic squares, has published a new paper entitled "Magic Squares with Perfect Square Number Sums."

Since the 5th March 2017, Jan van Delden has published a paper entitled "Area Magic Squares of Order 3" in which he presents an improved algorithm. His work also includes new findings in area semi-magic squares of order-3, and a shoelace formula to measure the deviation in area.

Since the 8th March 2017, following a tweet by Simon Gregg, Microsiervos published an article entitled "Cuadrados de áreas mágicas." This article has been relayed by Inoreader amongst others.

Since the 22nd March 2017, writing for EL PAÍS, Miguel Ángel Morales has included the subject of area magic squares in an article entitled "No solo de números consecutivos vive el cuadrado mágico."

Since the 19th April 2017, writing for "Geogebra," Georg Wengler has included an article entitled "Magisches Flächen-Quadrat."

In the N° 487 2018 May issue of "Pour La Science" (the French edition of Scientific American), Professor Jean-Paul Delahaye has written an article entitled "Les Carrés Magiques d'Aires."

In the December 2018 issue of "Spektrum der Wissenschaft" (a Springer Nature journal, and the German edition of Scientific American), Professor Jean-Paul Delahaye has written an article entitled "FLÄCHENMAGISCHE QUADRATE."

Since the 25th March 2019, Akehiko Takahashi, the webmaster of "Math Dojo," includes Area Magic Squares in his article entitled "Magic Squares and Beyond."

On the 17th July 2019, a discussion in Japanese, about Area Magic Squares, began on the forum of "Japanese Traditional Mathematical Calculator."
 
Circa 2019, on the French recreational mathematics site "Diophante," Michel Lafond published the first linear area magic square in a problem n° B138, entitled "Carré magique géométrique," and asked mathematicians to prove its existence. Several solutions are proposed.

On the 1st January 2020, (exactly three years after the original area magic square greetings card!), an article about area magic patchwork entitled "Flächenmagische Quadrate - aus Stoff," was published by the German blogger "Siebensachen-zum-Selbermachen."

On the 12th January 2020, the recreational mathematician Ed Pegg Jr., published a "Magic Square with areas" on his site "Mathpuzzle." 
 
On the 20th May 2021, Morita Mizusumashi (盛田みずすまし @nosiika) tweeted a nice polyomino area magic square of order-3 constructed with 9 assemblies of 5 to 13 monominoes
 
On the 21st May 2021, Yoshiaki Araki (面積魔方陣がテセレーションみたいな件 @alytile) tweeted several order-4 and order-3 solutions in a polyomino area magic square thread. These included (amongst others) an order-4 example constructed with 16 assemblies of 5 to 20 dominoes.
 
On the 24th May 2021, Yoshiaki Araki then tweeted an order-3 polyomino area magic square constructed using assemblies of 1 to 9 same-shaped pentominoes! Edo Timmermans, the author of this beautiful square, had apparently been inspired by Yoshiaki Araki's previous posts!

Since the 22nd June 2021, Inder Taneja has published a paper entitled "Creative Magic Squares: Area Representations" in which he explores polyomino area magic using perfect square magic sums.

A new post on "Polyomino Area Magic Tori" can be found in these pages since the 7th June 2022.
 
On the 3rd October 2024, Gianni A. Sarcone published an article entitled "Geometric Magic Square," presenting the area magic square concept in the pages of the Archimedes Lab Project.

Follow it subscription button
Read more ...

Monday, 29 August 2016

Complementary Number Patterns on Fourth-Order Magic Tori

The 880 fourth-order magic squares were first identified and listed by Bernard Frénicle de Bessy in his « Table générale des quarrez magiques de quatre, » which was published posthumously in 1693, in his book « Des quarrez magiques. » The census of these 880 4x4 squares is given in the appendix to the book « New Recreations With Magic Squares » by William H. Benson and Oswald Jacoby (Edition 1976), and also on the website of the late Harvey D. Heinz:  Frénicle n° 1 à 200, Frénicle n° 201 à 400, Frénicle n° 401 à 600, Frénicle n° 601 à 880.

Further to Bernard Frénicle de Bessy's initial findings, Henry Ernest Dudeney then classified the 880 fourth-order magic squares under 12 pattern types, in "The Queen" in 1910, (later republished in his book  "Amusements in Mathematics" in 1917). These patterns were determined through the observation of the relative positions of complementary pairs of numbers (which add up to N²+1 when N is the order of the square).

Although the different Dudeney pattern types can indeed be observed on fourth-order magic squares, they cannot be used for the classification of the fourth-order magic tori that display these squares. A Dudeney pattern type can be misleading because it depends on a bordered magic square viewpoint, whilst the magic torus that displays the magic square has a limitless surface...

In the study that follows the complementary number patterns are therefore tested, by comparing a developed torus surface and two traditional Frénicle magic square viewpoints for each of the 12 different types of fourth-order magic tori.

Complementary number patterns of each fourth-order magic torus type


General information on the magic torus index and type numbers


In addition to the Frénicle index numbers and the Dudeney types that have already been mentioned above, the present study also uses the index and type numbers of the fourth-order magic tori. For readers who may not be acquainted with the subject, essential information can be found in the following pages:
In a previous article "255 Fourth-Order Magic Tori, and 1 Third-Order Magic Torus," the fourth-order magic tori have been classed in 12 types, and each magic torus has received a specific type number.
In a previous article "Table of Fourth-Order Magic Tori," so as to facilitate the identification of a magic torus beginning with any magic square, a standard torus form has also been defined, and each of the 255 fourth-order magic tori has received a specific index number.

Complementary number patterns of the pandiagonal tori type T4.01


The 3 pandiagonal tori type T4.01 are here represented by the pandiagonal torus with index n° T4.01.1 (torus type n° T4.01.1). This pandiagonal torus displays 16 pandiagonal squares with Frénicle index n°s 102, 104, 174, 201, 279, 281, 365, 393, 473, 530, 565, 623, 690, 748, 785 and 828. All of these squares, (including the Frénicle index n°s 102 and 174 illustrated here), show complementary number patterns that are Dudeney type I.
order 4 pandiagonal magic torus complementary number patterns
order 4 pandiagonal magic square complementary number patterns

Complementary number patterns of the semi-pandiagonal tori type T4.02.1


The 24 semi-pandiagonal tori type T4.02.1 are here represented by the semi-pandiagonal torus with index n° T4.115 (torus type n° T4.02.1.09). This semi-pandiagonal torus displays 8 semi-pandiagonal squares with Frénicle index n°s 48, 192, 255, 400, 570, 734, 763 and 824. Half of these squares, (including the Frénicle index n° 192 illustrated here), show complementary number patterns that are Dudeney type IV. The other half, (including the Frénicle index n° 48 illustrated here), show complementary number patterns that are Dudeney type VI.
order 4 semi-pandiagonal magic Square complementary number patterns Dudeney types IV and VI

Complementary number patterns of the semi-pandiagonal tori type T4.02.2


The 12 semi-pandiagonal tori type T4.02.2 are here represented by the semi-pandiagonal torus with index n° T4.059 (torus type n° T4.02.2.01). This semi-pandiagonal torus displays 8 semi-pandiagonal squares with Frénicle index n°s 21, 176, 213, 361, 445, 591, 808 and 860. Half of these squares, (including the Frénicle index n° 21 illustrated here), show complementary number patterns that are Dudeney type II. The other half, (including the Frénicle index n° 176 illustrated here), show complementary number patterns that are Dudeney type III.
order 4 semi-pandiagonal magic square complementary number patterns Dudeney types II and III

Complementary number patterns of the semi-pandiagonal tori type T4.02.3


The 12 semi-pandiagonal tori type T4.02.3 are here represented by the semi-pandiagonal torus with index n° T4.085 (torus type n° T4.02.3.01). This semi-pandiagonal torus displays 8 semi-pandiagonal squares with Frénicle index n°s 32, 173, 228, 362, 425, 577, 798 and 853. All of these squares, (including the Frénicle index n°s 173 and 228 illustrated here), show complementary number patterns that are Dudeney type V.
order 4 semi-pandiagonal magic square complementary number patterns Dudeney type V

Complementary number patterns of the partially pandiagonal tori type T4.03.1


The 6 partially pandiagonal tori type T4.03.1 are here represented by the partially pandiagonal torus with index n° T4.108 (torus type n° T4.03.1.1). This partially pandiagonal torus displays 4 partially pandiagonal squares with Frénicle index n°s 46, 50, 337 and 545. All of these squares, (including the Frénicle index n°s 46 and 545 illustrated here), show complementary number patterns that are Dudeney type VI.
order 4 partially pandiagonal magic square complementary number patterns Dudeney type VI

As already mentioned in "A New Census of Fourth-Order Magic Squares," Dudeney overlooked the partially pandiagonal characteristics, and mistakenly classified these squares as "simple."

Complementary number patterns of the partially pandiagonal tori type T4.03.2


The 12 partially pandiagonal tori type T4.03.2 are here represented by the partially pandiagonal torus with index n° T4.195 (torus type n° T4.03.2.06). This partially pandiagonal torus displays 4 partially pandiagonal squares with Frénicle index n°s 208, 525, 526 and 693. Half of these squares, (including the Frénicle index n° 693 illustrated here), show complementary number patterns that are Dudeney type VII. The other half, (including the Frénicle index n° 208 illustrated here), show complementary number patterns that are Dudeney type IX.
order 4 partially pandiagonal magic square complementary number patterns Dudeney types VII and IX

As already mentioned in "A New Census of Fourth-Order Magic Squares," Dudeney overlooked the partially pandiagonal characteristics, and mistakenly classified these squares as "simple."

Complementary number patterns of the partially pandiagonal tori type T4.03.3


The 2 partially pandiagonal tori type T4.03.3 are here represented by the partially pandiagonal torus with index n° T4.217 (torus type n° T4.03.3.1). This partially pandiagonal torus displays 4 partially pandiagonal squares with Frénicle index n°s 181, 374, 484 and 643. All of these squares, (including the Frénicle index n°s 484 and 643 illustrated here), show complementary number patterns that are Dudeney type XI.
order 4 partially pandiagonal magic square complementary number patterns Dudeney type XI

As already mentioned in "A New Census of Fourth-Order Magic Squares," Dudeney overlooked the partially pandiagonal characteristics, and mistakenly classified these squares as "simple."

Complementary number patterns of the partially pandiagonal tori type T4.04


The 4 partially pandiagonal tori type T4.04 are here represented by the partially pandiagonal torus with index n° T4.096 (torus type n° T4.04.1). This partially pandiagonal torus displays 2 partially pandiagonal squares with Frénicle index n°s 40 and 522. The square with Frénicle index n° 40 (illustrated here) shows a complementary number pattern that is Dudeney type VIII, whilst the other square with Frénicle index n° 522 (illustrated here) shows a complementary number pattern that is Dudeney type X.
order 4 partially pandiagonal magic square complementary number patterns Dudeney types VIII and X

As already mentioned in "A New Census of Fourth-Order Magic Squares," Dudeney overlooked the partially pandiagonal characteristics, and mistakenly classified these squares as "simple."

Complementary number patterns of the basic magic tori type T4.05.1


The 92 basic magic tori type T4.05.1 are here represented by the basic magic torus with index n° T4.002 (torus type n° T4.05.1.01). This basic magic torus displays 2 basic magic squares with Frénicle index n°s 1 and 458. Both of these squares, illustrated here, show complementary number patterns that are Dudeney type VI.
order 4 basic magic square complementary number patterns Dudeney types VI

Complementary number patterns of the basic magic tori type T4.05.2


The 32 basic magic tori type T4.05.2 are here represented by the basic magic torus with index n° T4.049 (torus type n° T4.05.2.01). This basic magic torus displays 2 basic magic squares with Frénicle index n°s 23 and 767. The square with Frénicle index n° 767 (illustrated here) shows a complementary number pattern that is Dudeney type VII, whilst the square with Frénicle index n° 23 (illustrated here) shows a complementary number pattern that is Dudeney type IX.
order 4 basic magic square complementary number patterns Dudeney types VII and IX

Complementary number patterns of the basic magic tori type T4.05.3


The 4 basic magic tori type T4.05.3 are here represented by the basic magic torus with index n° T4.005 (torus type n° T4.05.3.1). This basic magic torus displays 2 basic magic squares with Frénicle index n°s 3 and 613. Both of these squares, illustrated here, show complementary number patterns that are Dudeney type XII.
order 4 basic magic square complementary number patterns Dudeney type XII

Complementary number patterns of the basic magic tori type T4.05.4


The 52 basic magic tori type T4.05.4 are here represented by the basic magic torus with index n° T4.019 (torus type n° T4.05.4.1). This basic magic torus displays 2 basic magic squares with Frénicle index n°s 8 and 343. The square with Frénicle index n° 8 (illustrated here) shows a complementary number pattern that is Dudeney type VIII, whilst the square with Frénicle index n° 343 (illustrated here) shows a complementary number pattern that is Dudeney type X.
order 4 basic magic square complementary number patterns Dudeney types VIII and X

Conclusions


We can see that the Dudeney pattern types I, V, XI, and XII are not only valid for magic squares, but also for the magic tori that display these squares. On the other hand, the Dudeney pattern types II and III are shown to be partial viewpoints of a single pattern on the fourth-order magic tori. Again, the Dudeney pattern types IV and VI, the Dudeney pattern types VII and IX, and also the Dudeney pattern types VIII and X, are shown to be partial viewpoints of single patterns on the fourth-order magic tori.

We also notice that some of the detected complementary number patterns have contrasting hemitorus arrangements.

It is necessary to adapt the Dudeney pattern types, and add new symbols that not only reveal the real nature of the complementary number relationships, but also facilitate their comprehension. With this in mind, the 8 figures that follow have been selected to illustrate the essentially different complementary number pattern types that occur on fourth-order magic tori:
Magic Tori of Order-4 new complementary number pattern types

To be read with a previous table that compared the 12 Dudeney pattern types with the 12 Magic torus types, published in "A New Census of Fourth-Order Magic Squares," the new table that follows, recapitulates the latest findings, and shows the repartition of the 8 complementary number patterns on the magic squares of the fourth-order magic tori:

Table of Complementary number patterns of magic tori of order-4

Further Developments



Follow it subscription button
Read more ...

Monday, 25 March 2013

Fourth-Order Partially Panmagic Torus T4.098

As shown in previous articles, the partially panmagic squares with Frénicle index n°275 and 519 are displayed on a same partially panmagic torus classified by type T4.04.2, and indexed (using normalised torus form) T4.098.

order-4 partially pandiagonal magic torus index n° T4.098 type n° T4.04.2
When studied on the surface of the partially panmagic torus we are not able to begin the line path as there are two ways round the torus ring to link 1 with 2:

order 4 line path partially pandiagonal magic torus type T4.04.2

In order to better visualise how the T4.098 partially panmagic torus works I have produced the diagrams below. The partially panmagic torus is a symmetrically stable number system. Different number couples produce continuously balanced tensions. I have indicated some of the mathematical properties but you will notice others when you contemplate this beautiful counting machine:

order 4 partially pandiagonal magic torus index T4.098 cross-sections 1


order 4 partially pandiagonal magic torus index T4.098 cross-sections 2

The number couples of the partially panmagic torus produce different patterns on the magic squares that they display:

order 4 partially pandiagonal magic torus index T4.098 square patterns 1


order 4 partially pandiagonal magic torus index T4.098 square patterns 2

order 4 partially pandiagonal torus index T4.098 square patterns 3

Follow it subscription button
Read more ...

Saturday, 23 March 2013

Fourth-Order Magic Torus T4.001

As shown in previous articles, the basic magic squares with Frénicle index n°002 and 448 are displayed on a same magic torus classified by type T4.05.1.02, and indexed (using normalised torus form) T4.001.
order-4 magic torus index n° T4.001 (type n° T4.05.1.02)
When studied on the surface of the magic torus, the line path between consecutive numbers is completely different to that of the magic square :

order 4 line path magic torus index T4.001 type T4.05.1.02

In order to better visualise how the T4.001 magic torus works I have produced the diagrams below. The magic torus is a symmetrically stable number system. Different number couples produce continuously balanced tensions. I have indicated some of the mathematical properties but you will notice others when you contemplate this beautiful counting machine:
order 4 magic torus index T4.001 cross-sections 1
order 4 magic torus index T4.001 cross-sections 2

The number couples of the magic torus produce different patterns on the magic squares that they display:

order 4 magic torus index T4.001 square patterns 1

order 4 magic torus index T4.001 square patterns 2

Follow it subscription button
Read more ...